F4 (алгоритм) - significado y definición. Qué es F4 (алгоритм)
DICLIB.COM
Herramientas lingüísticas IA
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es F4 (алгоритм) - definición

АЛГОРИТМ ВЫЧИСЛЕНИЯ БАЗИСА ГРЁБНЕРА

F4 (алгоритм)         
Алгоритм F4 был предложен Жан-Шарль Фожером (Jean-Charles Faugerе) в 1999 г как новый эффективный алгоритм вычисления базиса Грёбнера. Этот алгоритм вычисляет базис Грёбнера идеала в кольце многочленов с помощью серии стандартной процедуры линейной алгебры: приведений матриц к ступенчатому виду.
Евклида алгоритм         
  • Число шагов в алгоритме Евклида для НОД(''x'',''y''). Более светлые точки (красные и жёлтые) указывают на относительно меньшее количество шагов, тогда как более тёмные точки (фиолетовые и синие) на большее количество шагов. Самая большая тёмная область следует за прямой ''y'' = ''Φx'', где ''Φ'' — [[золотое сечение]].
АЛГОРИТМ ДЛЯ НАХОЖДЕНИЯ НАИБОЛЬШЕГО ОБЩЕГО ДЕЛИТЕЛЯ ДВУХ ЦЕЛЫХ ЧИСЕЛ
Алгоритм Эвклида; Евклида алгоритм; Xgcd; Теорема Ламе

способ нахождения наибольшего общего делителя двух целых чисел, двух многочленов или общей меры двух отрезков. Описан в геометрической форме в "Началах" Евклида. Для случая положительных чисел а и b, причём a b, этот способ состоит в следующем. Деление с остатком числа а на число b всегда приводит к результату а = nb + b1, где частное n - целое положительное число, а остаток b1 - либо 0, либо положительное число, меньшее b (0 ≤ b1 < b). Будем производить последовательное деление:

где все ni - положительные целые числа и 0 ≤ b1 < bi-1 до тех пор, пока не получится остаток, равный нулю. Этот последний остаток bk+1 можно не писать, так что ряд равенств (*) закончится так:

bk-2 = nk-1 + bk,

bk-1 = nkbk.

Последний положительный остаток bк в этом процессе и является наибольшим общим делителем чисел а и b. Е. а. служит не только для нахождения наибольшего общего делителя, но и для доказательства его существования. В случае многочленов или отрезков поступают сходным образом. В случае несоизмеримых отрезков (см. Соизмеримые и несоизмеримые величины) Е. а. оказывается бесконечным.

F₄ (математика)         
F4; F4 (математика)
В математике F4 — название одной из пяти (компактных или комплексных) особых простых групп Ли, а также её алгебры Ли \mathfrak{f}_4. F4 имеет ранг 4 и размерность 52. Группа F4 односвязна, а её группа внешних автоморфизмов тривиальна. Простейшее точное линейное представление группы F4, а также её алгебры Ли, 26-мерно и неприводимо.

Wikipedia

F4 (алгоритм)

Алгоритм F4 был предложен Жан-Шарль Фожером (Jean-Charles Faugerе) в 1999 г как новый эффективный алгоритм вычисления базиса Грёбнера. Этот алгоритм вычисляет базис Грёбнера идеала в кольце многочленов с помощью серии стандартной процедуры линейной алгебры: приведений матриц к ступенчатому виду. Он является одним из самых быстрых на сегодняшний день.

¿Qué es F4 (алгоритм)? - significado y definición